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Inference

Inference is fundamentally dynamical in character

I Given the state space of some data, D, and an unknown
process f : R→ D, we seek to infer a likely f for all R
explaining current observations of D

I Non-trivial in the presence of noise—f is no longer uniquely
specified under f (t) + η(t)
I Allows several different particular realisations of noise, i.e.,

sample paths

I Given probabilities over sample paths f (t) + η(t), what can
we say about the states (data) generated by f ?
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Example one

Consider the following samples of two D-valued random variables,
X1(t) and X2(t):

0 2 4 6 8 10

5000

0

5000

10000

15000

20000

25000 X1(t)
X2(t)

0 2 4 6 8 10

Here, X1(t) = exp{t}+N (0, σ) whilst X2(t) = µ+N (0, σ)
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Example two
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Here, X1(t) = a exp{t}+N (0, σ) whilst X2(t) = µ+ bNs(0, t)
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Problem

Problem: given an unknown stochastic dynamical system, how can
we find the corresponding probability density, in general?

I Inferring f =⇒ finding the probability of given samples
x ∈ D, p(x), by observing sample paths

I This probability density is given by the Fokker-Planck
equation in the case of η being a Wiener process
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The Fokker-Planck equation

The Fokker-Planck equation for states of a Gaussian process

f (t) +N (0, t)

is
∂p(x , t)

∂t
= −∂f (t)p(x , t)

∂x
+
∂2p(x , t)

∂x2
.

Can we find the solution to this equation by using inference to
derive p(x , t)?

Objective

We seek to solve arbitrary diffusion processes, ideally in a closed
form, inspired by inference
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Maximum entropy inference

Let S be the entropy

−
∫
D

ln{p(x)}p(x)dx − λ
∫
D
p(x) dx + 1

maximised by some optimal p∗(x). The Euler-Lagrange equation

∂

∂p(x)

(
− ln{p(x)}p(x)− λp(x)

)
= 0

maximises S , so we have p∗(x) such that

− ln{p(x)} − 1− λ = 0.

Thus
p∗(x) = exp{−1− λ}.
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Maximum entropy inference with constraints

Let S be the constrained entropy

−
∫
D

ln{p(x)}p(x)dx −
(
λ1

∫
D
p(x) dx − 1

)
−
(
λ2

∫
D
x p(x)dx − E[x ]

)
The Euler-Lagrange equation is now

− ln{p(x)} − 1− λ1 − λ2x = 0,

yielding
p∗(x) = Z−1 exp{−λ2x}.

This is the Boltzmann distribution.
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Villani and Jaynes

Two interesting, but unconnected, statements:

I All physical processes ought to maximise entropy at
equilibrium [Jaynes, 1957]

I The Fokker-Planck equation maximises entropy at equilibrium
[Markowich and Villani, 2000]
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The heat equation

In the restricted case of the heat equation and maximum entropy
inference, we have analytic results.

Take the heat equation as

∂

∂t
p(x , t) =

∂2

∂x2
p(x , t)

The stationary solution to the heat equation p(x , t) = 0 is some
constant, the value of which depends on boundary conditions
[Haberman 1987, 2.4.1].
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Maximising entropy

Maximising the unconstrained entropy yields the constant function

exp{−λ− 1},

so with the degree of freedom in λ being determined by the data,
we can converge to the stationary heat equation.

Can we prove that this solves the heat equation?
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Theorem (maximum entropy solves heat)

Theorem

For any finite volume and stationary p(x),

arg max
p(x)

(S [p(x)]) = p(x) = exp{−λ− 1}

such that maximising the entropy computes the stationary solution
to the heat equation.
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A useful lemma

Lemma

The gradient flow of S is ∂xxp(x , t).

Proof.

First, set ∂tp(x , t) = ∇S [p(x , t)] as a governing equation.

It is a fundamental result in harmonic analysis that ∂2

∂x2
f can be

deduced as the function for the dynamics of the gradient flow
(descent) of certain functionals, like S [f ].

Therefore, ∂2

∂x2
= ∇S , and,

∂tp(x , t) = ∇S [p(x , t)] ⇐⇒ ∂tp(x , t) = ∂2

∂x2
p(x , t).
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Another useful lemma

Lemma

The gradient flow of ∂tS is ∂xx ln{p(x , t)}.

Proof.

Integrating by parts, we can write ∂tS as∫
D ∂x ln{p(x , t)}∂xp(x , t)dx . The gradient flow of this expression

is
∂x∂∂xp(x ,t)

(
∂x ln{p(x , t)}∂xp(x , t)

)
,

which equals ∂xx ln{p(x , t)}.

The integration by parts identity in this calculation was noted by
Terence Tao in ‘Some notes on Bakry-Émery theory,’ 2013.
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Proof of Theorem 1

Proof.

∂xxp(x) 7→ ∂xx ln{p(x)} ⇐⇒ ∇S [p(x)] 7→ ∇∂tS [p(x)] (Lem 2).

Set ∇∂tS [p(x)] = ∂xx ln{p(x)} = ∂t ln{p(x)}.

Assume gradient descent, such that ∇∂tS [p(x)] = 0. Then
ln{p(x)} is stationary, i.e., ∂t ln{p(x)} = 0.

Furthermore,
∫ τ
0 ∇∂tS [p(x)] = ∇S [p(x)]

∣∣∣τ
0

= 0 (Leibniz’ rule).

Integrating the other side of Step 2, we get∫ τ
0 ∂t ln{p(x)} = ln{p(x)}

∣∣∣τ
0

such that

ln{p(x)} = ∇S [p(x)]− λ− 1.

Exponentiating both sides, Theorem 1 follows from ∇S = 0.
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Why is this interesting?

For the heat equation, a gradient descent on entropy hides a time
integral behind some algebra.
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Deep learning as an inspiration

Where is this going? Will it become a tool for PDE analysis? A
general theory of PDEs?

I Deep learning predicts dynamics of hopelessly complex SDE
problems; solves their corresponding PDEs over states, from
observing outputs
I Is a very powerful technique

I Can we use deep learning to understand physical processes by
inference?
I In a sense, we already do
I However—we don’t understand DL

I Very little hope for analytic use of these techniques right now
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Computational techniques

If not analytic, what about numerical?

I Maximum entropy for the heat equation was just a special
case. We can do the same in general, using numerical
techniques rather than solving by hand

I Physics inspired neural networks
I Lagrangian neural networks
I Wave equations and fluid mechanics [Cai et al, 2021]

I Karniadakis group

I Fourier neural operator [Li et al, 2021]
I Anandkumar group

I Many algorithms easily handle non-linearity, extreme
dimensionality [Han, Jentzen, and E, 2018]
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A look to the future

Lots of interesting questions in pure and applied maths, data and
computer science, etc

From Quanta Magazine, https://www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-equations-faster-
than-ever-before-20210419/, by Anil Ananthaswamy.

PDEs and Max Ent Dalton A R Sakthivadivel



Problem and Motivation Previous Results Max Ent and Stationary Heat Concluding Remarks

References

1 Edwin T Jaynes. Information theory and statistical mechanics.
Physical Review, 106(4):620–630, 1957.

2 Peter A Markowich and Cédric Villani. On the trend to equilibrium
for the Fokker-Planck equation: An interplay between physics and
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